Content-Based Collaborative Filtering for News Topic Recommendation
نویسندگان
چکیده
News recommendation has become a big attraction with which major Web search portals retain their users. Two effective approaches are Content-based Filtering and Collaborative Filtering, each serving a specific recommendation scenario. The Content-based Filtering approaches inspect rich contexts of the recommended items, while the Collaborative Filtering approaches predict the interests of long-tail users by collaboratively learning from interests of related users. We have observed empirically that, for the problem of news topic displaying, both the rich context of news topics and the long-tail users exist. Therefore, in this paper, we propose a Content-based Collaborative Filtering approach (CCF) to bring both Content-based Filtering and Collaborative Filtering approaches together. We found that combining the two is not an easy task, but the benefits of CCF are impressive. On one hand, CCF makes recommendations based on the rich contexts of the news. On the other hand, CCF collaboratively analyzes the scarce feedbacks from the long-tail users. We tailored this CCF approach for the news topic displaying on the Bing front page and demonstrated great gains in attracting users. In the experiments and analyses part of this paper, we discuss the performance gains and insights in news topic recommendation in Bing.
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملRecommendation System Based on Collaborative Filtering
Recommendation system is a specific type of information filtering technique that attempts to present information items (such as movies, music, web sites, news) that are likely of interest to the user. It is of great importance for the success of e-commerce and IT industry nowadays, and gradually gains popularity in various applications (e.g. Netflix project, Google news, Amazon). Intuitively, a...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کامل